
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  15 ( 1 9 8 0 )  8 3 9 - 8 4 4  

Statistical analysis of the Hertzian 
pyrex glass using the 
Weibull distribution function 

fracture of 

M. K. K E S H A V A N ,  G. A. S A R G E N T ,  H. C O N R A D  
Metallurgical Engineering and Materials Science Department, University of Kentucky, 
Lexington, Kentucky 40506, USA 

Hertzian fracture tests were carried out on specimens of ground-and-polished Pyrex glass 
using polished Pyrex glass balls of 6 and 8 mm diameter. The results were analysed 
according to the theory of flaw statistics originally proposed by Weibull. The Weibull 
parameters m and ao were found to be independent of ball size; (ru however decreased 
with increase in ball size. The parameters Ou, ao and m obtained from the Hertzian tests 
differed from those obtained from a four-point bend test. The predicted mean fracture 
stress and the mean fracture location for Hertzian fracture using the derived Weibull 
parameters agreed reasonably well with the experimental values. 

1. Introduction 
In a previous paper [1] on the Hertzian fracture 
of Pyrex glass it was found that the critical load 
to cause Hertzian fracture exhibited appreciable 
scatter. The scatter was found to increase with 
indenter size and decrease upon abrading the as- 
received (ground-and-polished) glass specimen 
surface. Also, other surface treatments like anneal- 
ing or etching in HF caused an increase in the 
scatter. The present paper examines the statistical 
nature of the scatter in terms of the Weibull flaw 
distribution function [2] often employed to 
describe the fracture strength of brittle solids. 

It is generally recognized that the fracture of 
a brittle material is largely determined by the 
number and severity of flaws on its surface. This 
results in considerable scatter in the fracture stress, 
which depends on the flaw distribution. Weibull 
[2] first analysed the statistical nature of the 
fracture behaviour of brittle materials using a 
distribution function to characterize the flaws on 
the surface. A number of investigators [3-6]  
subsequently modified Weibuli's approach for 

/ 

determining the flaw distribution function from 
strength measurements. However, there still 
exists a lack of agreement as to the validity of 
these analyses when applied to the Hertzian 
fracture of glass [6-13] .  The more recent work 
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of Oh and Finnie [12] and Hamilton and Rawson 
[13] on Hertzian fracture of glass using the 
Weibull distribution function explains some of 
the experimental observations. However, some 
of the assumptions in their analyses may be 
questioned. It is therefore the purpose of this 
paper to reexamine the application of the Weibull 
theory to the Hertzian fracture of Pyrex glass. 

2. Theoretical considerations 
Many investigators have used the original flaw 
distribution function proposed by Weibull [2] 

fo n(a) = q~(s) ds (1) 

where n(a) is the total number of flaws per unit 
area of surface which can act as fracture origins 
when the applied stress is a and ~(s) is the distri- 
bution function of crack sizes. Now suppose that 
A is the surface area of a specimen having a surface 
characterized by a flaw distribution n(a) and that 
the specimen is loaded in such a way that the 
stress is uniform over the whole surface of the 
specimen. It can then be shown that the fraction 
of specimens fracturing at a stress in the range 0 
to a is given by 

Y(o) = 1 - -exp  [--n(o)A] (2) 
�9 1980 Chapman and Hall Ltd. 839 



where F is the cumulative probability of fracture 
for this range of stress. However, when a spherical 
indenter is pressed onto the surface of a specimen, 
as in a Hertzian fracture test, the stress distribution 
on the surface is non-uniform. The stress varies 
with distance according to 

orr = o~(a/r) 2 (3) 

where % and Orr are the stress values at the 
contact radius a and at the radial distance r, 
respectively. In this case, Oh and Finnie [12] 
have shown that the cumulative probability of 
fracture F(o) is given by 

F ( o ) =  1--exp[--f:n(o)2~rdr] (4) 

Weibull [2] and other investigators [12,13] 
assume that n(o) is of the form 

n ( o ) =  (O--outm, o>Ou (5) 
\ Oo ) 

= 0, o < % (Sa) 

3, Materials and test procedure 
3.1. Hertzian fracture tests 
The specimen and indenter materials used in thei 
Hertzian fracture tests and the test procedure are 
described in detail in [1].  Briefly, the specimen 
material was 10ram thick Corning Pyrex 7740 
glass plate (ground-and-polished). The present 
Hertzian fracture tests consisted of pressing 6 and 
8 mm diameter Pyrex glass balls onto the specimen 
surface using an Instron tensile testing machine at 
a cross-head velocity of 8.5 x 10 -6 m see -x . 

3.2. Bend tests  
The standard ASTM four-point bend test pro- 
cedure [16] was followed. The specimens (10 cm x 
1.25 cm x I cm thick) were cut from ground-and- 
polished Corning Pyrex 7740 glass plates. The 
bend tests were conducted using an Instron tensile 
testing machine at the same cross-head velocity as 
the Hertzian fracture tests. The fracture samples 
were examined visually and the fracture stress was 
taken from those samples which failed due to the 
surface flaws and not edge flaws. 

The parameters eu, o0 and m are constants for a 
particular surface and it is desired to fred best 
values which fit the experimental results. Hamilton 
and Rawson [13] assume that Ou, o0 and m are 
independent of ball size in Hertzian fracture tests. 
However, the results of Conrad et al. [1] suggest 
that the zero probability stress o u is dependent on 
ball size. Further, Oh and Finnie [12] use the para- 
meter obtained from four-point bend tests to 
analyse the Hertzian fracture behaviour of glass. 
However, it will be shown below that the parameters 
ou, ao and m determined from bend tests differ 
from those of Hertzian fracture tests. A similar con- 
clusion was reached earlier by Lewis and Rawson 
[ 14]. Hence, one cannot use parameters determined 
from bend tests to analyse Hertzian fracture test 
results. 

Finally, in the earlier paper [1] it was shown 
that the stress distribution on the surface of 
Hertzian fracture test specimens is altered by 
friction between the indenter and the specimen 
and by surface roughness. The stress variation due 
to these factors was calculated by Johnson et al. 
[ 15 ] and shown to be complex. Hence, to minimize 
roughness and friction effects in the present study, 
polished Pyrex glass spheres were employed as 
indenters, which were loaded onto the ground-and- 
polished Pyrex glass specimens. 

4. Determination of the Weibull parameters 
from the experimental results 

4.1. Bend tests 
Well and Daniel [17] have shown for a material 
which fails due to a distribution of flaws on its 
surface that the exponential in Equation 4 may be 
integrated (using n(o) defined by Equation 5) for 
pure bending of a specimen with rectangular cross. 
section to give 

= 1 - - exp  [bl o--au m h 
(L- -~o)  ( m + l )  

F(o) 

Oo/\ Oo / 

where b, h and 1 are width, thickness and length 
of the specimen, respectively. Taking F ( o ) =  
n/(N + 1), where n is the number assigned to a 
specimen when the N specimens are ranked from 
I to N in order of increasing fracture strength, and 
substituting the value ofF(o)  into Equation 6, one 
obtains upon taking the logarithm twice 

l~176176  (1-~176176 + 

= m log (o--  ou) + log b l  + log log (e). (6a) 
oom 
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Figure 1 Comparison of the experimental values of prob- 
ability versus fracture stress from bend tests with those 
calculated using the WeibuU distribution function. 

The parameters Ou, go and m were determined 
from the bend tests using Equation 6 in the follow- 
ing manner. Assuming that the contribution due to 
the second term on the left-hand side of  Equation 
6a to be small, plots of  log log (N + 1)/(N + 1 -- n) 
as a function o f  log (a --  au) for a selected series 
o f  eu were drawn. The slope o f  the straight line 
passed through each set of  data yields to a first 
approximation the value o f  m for each value o f  au. 
The best value of  m was selected, and again using 
Equation 6a the left-hand side was plotted versus 
the right-hand side for various ou values until a 
good correlation was obtained. Fig. 1 shows the 
actual experimental data points and the predicted 
curve based on the procedure just described. 
Table I lists the best-fit values o f a u ,  Oo and m for 
the bend tests on the present material. Also 
included are the Values o f  ou, ao and m obtained 
by Oh and Finnie [12] for Pyrex glass. 

4 .2 .  Her t z i an  f r a c t u r e  tes ts  
Oh and Finnie [12] showed that the probability 
o f  fracture in a Hertzian fracture test is given by 

F(a) = 1  - e x p  - - [ r u ( o r ' - - ~  dr 
~~ Oo ] 

(7) 

ru being the value of  the radial distance r at which 
art = ou. Hamilton and Rawson [13] simplified 
Equation 7 using the Hertzian equation for contact 
stresses, namely 

< 0  O<~r<a 
(8)  

Orr = aa (a / r )  2 r >l a 

where a a = KaPR and a = Ko a. P is the load and 
R is the ball radius. Constants K1 and K are given 
by 

3 1 1 - v  '2 1 - - v  2] 
K~ = 4 [  E '  + E (9) 

27rKIR 
K - (10) 

1 - - 2 v  

Here v', E '  and v, E are Poisson's ratio and Young's 
modulus of  the ball and specimen respectively. 
Equation 7 can then be written as 

F(e) = 1 - - e x p  [--I(aa)]  (7a) 

where I(ea) is given by 

2 [ % - -  ou~ m 

I (~  n a t  0o } 

[,:., ] - - x )  + ~ . (11) 
• + m  ( l + m ) ( 3 + m )  " " 

and 
x = ( o u / a . ) .  

T A B L E I Weibull parameters o u, a 0 and m for the fracture of Corning 
7740 Pyrex glass in bend tests 

Surface Present work Oh and Finnie [12]* 
condition as-received (surface not specified) 

(ground-and-polished) 

au(Nm -=) 7.18 • 107 2.8 X 107 
3.5 X 107 

%(Nm -=) 4.80 • 109 3.1 X 107 
2.4 X 107 

m 1.3  4.2 
3.2 

* Two values of each of the parameters au, o o and m are given here for the 
results by Oh and Finnie [12], because it was difficult to select unique 
values from their graphs. 

8 4 1  
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Figure 2 Comparison of the experimental values of probability versus fracture stress from Hertzian fracture tests with 
those calculated using the WeibuU distribution function. 

Taking logarithms twice, Equation 11 becomes 

log log ( ~ - ~ )  = logI(oa) ( l la )  

log log ~ = log (oa--Ou) a [ d _ _ ~  

2 ! ( l - - x ) =  ]} 
+(1 +m)(3  + m )  + ' ' "  + l~ (~r/~176 

(ll.b) 
Equation 11b is of the form 

Y = M X  + constant. (12) 

The Weibull parameters, eu, Oo and m for the 
present Hertzian tests were determined using 
Equation l lb as follows. An approximate value 
of ou is selected first from the experimental data 
by extrapolation to zero probability of fracture. 
Using the selected experimental values of Oa, F and 
Ou, the values of  the left-hand side of Equation I ib  
are plotted against the right-hand side (neglecting 
the second term) for the various values of m. The 

best value of m corresponds to that when the slope 
of the plot is equal to 1.0. The intercept gives the 
value of log (?r/o~). The rn value so obtained was 
1.0 and o0 was 0.80 MN m -2. Taking these values 
of Oo and rn and the experimental values of Oa and 
F, the best value of Ou is found. 

The values of ou, Oo and rn so determined are 
listed in Table II. Fig, 2 compares the experimental 
values of aa with the calculated values using the 
derived Weibull parameters for the two ball sizes. 
The agreement between the two is good. 

5 .  D i s c u s s i o n  

The parameters Ou, Oo and m obtained by the 
Hertzian fracture tests differ from those by the 
four-point bend tests. Hence, one cannot use the 
parameters determined from the bend tests in 
Hertzian fracture analysis. Further, the parameter 
Ou was found to be ball size dependent. It was 
found in the earlier work [1] that the stress at 
50% probability varies as some power of the ball 
size. Since o u is here defined as the zero probability 

T A B LE I I Comparison of Weibull parameters obtained from the four- 
point bend tests and the Hertzian fracture tests for ground-and-polished 
Pyrex glass 

Weibull parameters Four-point Hertzian tests 

bend tests 3 ram* 4 ram* 

ou(Nm -z) 7.18 X 107 2.32 X 10 ~ 2.04 • 108 

oo(Nm -z) 4.80 X 109 8.00 X 10 s 8.00 X 10 s 

m 1.3 1.0 1.0 

* Pyrex glass ball radius. 
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mean fracture location determined using the 
Weibull parameters from Hertzian fracture tests. 
The mathematical analysis is similar to that by 
Oh and Finnie [12]. Reasonably good agreement 
exists between the experimental and predicted 
values. Also, it is dear that the flaw distribution 
can account for the ratio of the size of  the crack 
radius r* to the contact radius a (i.e. r*/a) to have 
a value up to 1.1. However, for a rough surface 
and for indenters with appreciably different elastic 
constants than the specimen friction comes into 
play due to elastic mismatch and roughness, which 
alter the stress distribution to give r*/a ratios up to 
1.5 [1 ]. Thus, one cannot account for these larger 
r*/a ratios from flaw distribution considerations 
alone. A similar conclusion was reached by Johnson 
etal. [151. 

Figure 3 Cumulative frequency (probability) versus the 
flaw size cf calculated from bend test and Hertzian frac- 
ture test results for Pyrex glass. 

stress, it is not surprising that it is also dependent 
on the ball size. 

It was proposed in the earlier paper [1] that 
the flaw size distribution causing the brittle frac- 
ture in both bend tests and Hertzian fracture tests 
can be determined using 

t 1 (13) 
cf = (1 ------~-)rrJ (1.12o,) 2 

Where cf is the flaw size, %, p and E are respec- 
tively surface energy, Poisson's ratio and Young's 
modulus of  the specimen and of is the fracture 
stress. Fig. 3 shows the flaw size distribution calcu- 
lated from Hertzian fracture and the bend test 
results using Equation 13. It is clear that the flaw 
sizes involved in the fracture are different for the 
two test methods. This provides further evidence 
that one cannot use the Weibull parameters ob- 
tained from bend tests to analyse Hertzian fracture. 
Also, as mentioned above, one cannot assume ou 
to be ball size independent. 

Table III gives the mean fracture stress and the 

6. Conclusions 
(1) The Weibull distribution function satisfactorily 
characterizes the fracture strength of Pyrex glass 
in four-point bend and Hertzian fracture tests. 
The Weibull parameters ou, Oo and m determined 
for a given surface condition from a four-point 
bend test and a Hertzian fracture test are different. 
Similar conclusions were reached by Lewis and 
Rawson [14]. 

(2) The Weibull parameters ao and m determined 
from a Hertzian fracture test are independent of 
ball size. However the zero probability stress Ou is 
ball size dependent, similar to the 50% probability 
or mean fracture stress. 

(3) The mean fracture stress and mean fracture 
location predicted using the Weibutl distribution 
function are in reasonable agreement with the 
experimental values when the elastic mismatch 
between the indenter and the specimen surface 
are the same and the surfaces are relatively smooth. 
Also, the existing flaw distribution can account 
for the ratio of  ring crack radius to contact radius 
r*/a < 1.1. However, friction effects due to surface 
roughness and elastic mismatch can displace the 
crack location to considerably larger r*/a values. 

T A B L E I I I Comparison of the mean fracture stress (crO, mean fracture location (r ~) and contact radius (a) predicted 
using WeibuU parameters with the experimental values obtained from the Hertzian fracture of Pyrex glass 

Pyrex glass Experimental Predicted 
ball radius , 

a r crf (r*/a) a r* of  (r*/a) 
(turn) (turn) (rnm) (MNm -2 ) (ram) (ram) (MN m--') 

3 0.19 0.20 279 1.05 0.20 0.21 275 1.10 

4 0.23 0.27 243 1.12 0.23 0.24 239 1.09 
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Hence,  in order to  analyse statistically the results 

from the Hertzian test using the Hertzian stress 
distr ibution and the Weibull distr ibution function,  
it  is impor tant  that  the indenter  and specimen 
have the same elastic constants and also that  the 
surface o f  bo th  are very smooth.  

(4) The flaw size distr ibution causing Hertzian 
fracture varies with the ball size. Also, the flaws 
causing fracture in four-point  bending are different 
(larger flaws) than t h o s e  in Hertzian fracture. 
Hence, to characterize fully the flaw size distri- 
but ion o f  a surface by Hertzian fracture tests 
one needs to use a wide range of  ball  sizes. 
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